STRUCTURAL CALCULATIONS

Rooftop Screen Rail Design

Prepared For:
Mitchell Bolton
PalmSHEILD
12330 Cary Circle
La Vista, NE 68128

Prepared By:

RISE Structural Associates
1405 Prairie Parkway - Suite B
West Fargo, North Dakota 58078

RISE Project No. 24075

April 4 ${ }^{\text {th }}, 2024$

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of South Dakota.

$$
\begin{aligned}
& \square 3285 \text { Fiechtner Dr. S. • Ste. B } \\
& \text { Wind }=V=120 \mathrm{mph} \\
& \text { nisk lategory }=I \\
& \text { Exposure }=C
\end{aligned}
$$

\qquad

SUE MELAWIND $\rightarrow F=756.16 /\left(8^{-1} \times 5^{\prime}\right)$

$$
=18.9 \mathrm{psf}
$$

Post Height $=8^{1} \cdot 0^{\prime \prime}$ spaced $5^{\prime} 0^{\prime \prime}$ Apout

$$
w_{w}=18.9 \mathrm{pst} \times 5^{\prime}=94.5 \mathrm{plt}
$$

$$
\begin{aligned}
\text { SEE RISA: } & \text { HSS } 4 \times 4 \times 1 / x^{\prime \prime} \text { of } \\
& \text { HSS } 2 \times 3 \times 1 / 6^{\prime \prime} \text { Kidher ok }
\end{aligned}
$$

$$
\begin{aligned}
& \text { StE lish }: \\
& 4 \times 4 \times 1 / 4^{\prime \prime} \text { Alumiaum } 6063 \cdot \text { ist ok } \\
& 2 \times 2 \times 1 / 8^{\prime \prime} \text { Alumioum } 6063 \text {-ist kiner ok }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\text { uplte }^{2}=75616 \quad \text { Down }=76616 \\
& x_{2}=\quad \begin{array}{l}
\text { Shear }= \\
\text { Uplit }
\end{array} \quad 75616=61016 \quad \text { Down }=76016 \\
& \text { Sher }=75016
\end{aligned}
$$

Channels $=8^{\prime \prime} \times 2.29^{\prime \prime} \times \cdot 25^{\prime \prime} 606196$ AS
SEE RISA calcs

Base plate Design

$$
\left.\right|_{\text {mi }} ^{8^{\prime} \quad \begin{array}{l}
W_{w}=91.516 \times \frac{8}{2}=378 \times 4=1.51216 \cdot \mathrm{ft} \\
\text { Momentaboyt-B.se }=1.51 \mathrm{kip} \cdot \mathrm{ff}
\end{array}} \begin{aligned}
& \text { Use } 8 \times 8 \times .75^{\prime \prime} \text { of } \quad 8^{\prime \prime} \times 10^{\prime \prime} \times .75^{\prime \prime}
\end{aligned}
$$

Kicker Mounting Bracket

$$
\text { Tensile strength } \left.=P_{n}=\frac{F_{y} A_{9}}{1.67}=\frac{(36 \mathrm{ksi})\left(3 / 8^{\prime \prime}\right.}{1.67} \times 10^{\prime \prime}\right)
$$

Plate Attachment to Post

$$
=80.84 \mathrm{kips}>70016
$$

Use '1/4" Fillet weld
Plate of steel
$1 / 8^{\prime \prime}$ fillet weld for steel $=371016 / \mathrm{in}$
Weld Length $=4^{\prime \prime} \times 3710=148 \% 016>700=\frac{(35 \text { ki) } 8 / 8 \times 10)}{1.67} \rightarrow$ chin
Weld or

$$
=78.59 \mathrm{kiPs}>760 \mathrm{k}
$$

"14" Fillet weld for Aluminum
PLATE OR ALUM

$$
\begin{aligned}
\lambda_{n}=F_{\text {sw }} .707(.25)= & 15 \text { si }(.707)(25) \\
= & 2.65125 \text { kip. in } \\
& 2651 \mathrm{k} / \mathrm{in} \times y^{\prime \prime}=16,60516>76016
\end{aligned}
$$

\qquad No. 211075
\qquad Fargo, North Dakota 58103 PROJECT \qquad
\qquad

Bolt comection between plate + kicker
5/8" Bolt UNC $\times 3^{-3 / 4 / 4}$ Hen -heal cap sumer (A4 Steel)

$$
\begin{aligned}
& \text { Stainless steel Bolt Shear strength }=\text { Group B } \\
& \text { Use fro }=68 \mathrm{ksi} \\
& \qquad \begin{aligned}
10,431 / 6>78016 \\
\text { Bolt is ok }
\end{aligned} \\
& \qquad \begin{aligned}
x_{r}=\frac{f_{n} A 6}{2}=\frac{68\left(\frac{5 / 8^{2} \pi}{4}\right)}{2}=10.133 \mathrm{kss}
\end{aligned}
\end{aligned}
$$

Bolt is of for plate comection uponimspection

Channel welds

$$
2559 \mathrm{l} / \mathrm{lin}
$$

Weld strength $\Rightarrow 362416 / 2651 / 6 /$ in $=1.37$ in \quad Use $2 "$ of weld e Minimum bor Channel to channel Connections

MecaWind v2405

Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2020

Exposure Constants per Table 26.11-1:

| Alpha: Table 26.11-1 Const | $=9.500$ | Zg: | Table 26.11-1 Const | $=900.000 \mathrm{ft}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| At: | Table 26.11-1 Const | $=0.105$ | Bt: | Table 26.11-1 Const | $=1.000$ |
| Am: | Table 26.11-1 Const | $=0.154$ | Bm: | Table 26.11-1 Const | $=0.650$ |
| C: | Table 26.11-1 Const | $=0.200$ | Eps: | Table 26.11-1 Const | $=0.200$ |

Gust Factor Calculation:

Gust Factor Category I Rigid Structures - Simplified Method
$=0.85$
Gust Factor Category II Rigid Structures - Complete Analysis

Zm	$=\operatorname{Max}(0.6$ * Ht, Zmin)	$=15.000 \mathrm{ft}$
Izm	$=C c *(33 / \mathrm{Zm}) \wedge 0.167$	$=0.228$
Lzm	$=\mathrm{L} *$ (Zm / 33) ^ Eps	$=427.057$
B	= Structure Width Normal to Wind	$=5.000 \mathrm{ft}$
Q	$=\left(1 /\left(1+0.63 *((B+H t) / \text { Lzm })^{\wedge} 0.63\right)\right)^{\wedge} 0.5$	$=0.967$
G2	$=0.925 *((1+0.7 * \operatorname{lzm} * 3.4 * Q) /(1+0.7 * 3.4 * \operatorname{lzm}))$	$=0.908$
Gust	r Used in Analysis	
G	= Lessor Of G1 Or G2	$=0.850$

G $\quad=$ Lessor Of G1 Or G2
$=0.850$

	Force Resisting System (MWFRS) Calculations for Freestanding Wall per Ch 29:
LF	$=$ Load Factor based upon ASD Design $=0.60$
hs	$=$ Overall height of structure $=8.000 \mathrm{ft}$
h	$=$ Mean Roof Height above grade $=8.000 \mathrm{ft}$
Kh	$=\mathrm{Z}<15 \mathrm{ft} \mathrm{[4.572} \mathrm{m]-->} \mathrm{(2.01} \mathrm{*} \mathrm{(15/zg)}{ }^{\text {c }}$ (2/Alpha) \{Table $\left.26.10-1\right\}=0.849$
Kzt	= Topographic Factor is 1 since no Topographic feature specified $=1.000$
Kd	$=$ Wind Directionality Factor per Table 26.6-1 $=0.85$
qh	$=(0.00256$ * Kh * Kzt * Kd * Ke * V^2) * LF $=15.96 \mathrm{psf}$
MWFRS Pre	ssures on Freestanding Wall per Fig 29.3-1:
R	$=$ Reduction factor to account for openings: (1-(1-e)^1.5) = 0.911
Rc	$=$ Reduction factor for Case C since $\mathrm{s} / \mathrm{h}>0.8:(1.8-\mathrm{s} / \mathrm{h})=0.800$
As	$=$ Gross Area of Wall: B * s = 40.00 sq ft
B / s	= Aspect Ratio: B / s $=0.625$
s / h	= Clearance Ratio: s / h = 1.000
Cf	= Net Force Coefficient for Case A and B per Fig 29.3-1 $=1.530$
e	$=$ Not Double Faced, Case B eccentricity is $0.2=0.2$
Case A: R	Resultant force acts normal to face through geometric center and since $\mathrm{s} / \mathrm{h}=1$ then consider force acting 0.05*s above the geometric center
$0.05 *$ s	$=$ Since $\mathrm{s} / \mathrm{h}=1$, load applied at vertical offset from geom center $=0.400 \mathrm{ft}$
F	$=$ Design Wind force: qh * G * Cf * As * R = 756 lb

```
Case B: Resultant force acts normal to face at a distance from the geometric
center toward the windward edge equal to e times the average width
and since s/h = 1 then consider force acting 0.05*s above the geometric center
0.05*s = Since s/h=1, load applied at vertical offset from geom center = 0.400 ft
Dx = Force Offset from Center toward windward edge: e * B = 1.000 ft
F = Design Wind force: qh * G * Cf * As * R = 756 lb
Case C: Since B/s < 2 then Case C need not be considered
```


AISC 14th(360-10): ASD Code Check

Direct Analysis Method

Member: M3 Shape: HSS2X2X2 Material: A500 Gr.B Rect Length: 67.882 in I Joint: N5 J Joint: N6 Envelope Code Check: 0.071 (LC 5) Report Based On 97 Sections		
	-. 007 at 33.234 in	$\mathrm{Dz} \longrightarrow$ in
	$\mathrm{Vy} \frac{8.432 \text { at } 0 \text { in }}{-7.624 \text { at } 67.882 \text { in }} \mathrm{lb}$	
T		My \qquad lb-ft
		$f(z) \longrightarrow \mathrm{ksi}$

AISC 14th(360-10): ASD Code Check
Direct Analysis Method

Member: M4

Shape:	RT4X4X0.250
Material:	$6063-$ T5
Lengt:	96 in
I Joint:	N8
J Joint:	N7
Envelope	
Code Check:	0.209
(LC 9)	
Report Based On 97 Sections	

T	$\mathrm{Mz} \longrightarrow \mathrm{lb-ft}$	
$\mathrm{fa} \frac{.01 \text { at } 96 \text { in }}{-.181 \text { at } 48 \text { in }} \mathrm{ksi}$	$f(y) \longrightarrow \text { ksi }$	

AA ADM1-15: ASD - Building Code Check

Max Bending Check Location Equation	$\begin{aligned} & 0.209 \text { (LC } \\ & 48 \text { in } \\ & \text { H.1-1 } \end{aligned}$		Max Shear Check Location Max Defl Ratio		$\begin{aligned} & 0.036 \text { (z) (LC 5) } \\ & 48 \text { in } \\ & \text { L/10000 } \end{aligned}$			
	Slender. Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$y-y$ 96 in 62.561		$z-z$ 96 in 62.561
Pnt/om 36363.636 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		96 in	
Pnc/om 26812.641 lb		98.9	62.6	E.2-1			$96 \text { in }$	
Mny/om 3567.677 lb -ft				B.5.4.2				
Mnz/om $3567.677 \mathrm{lb}-\mathrm{ft}$				B.5.4.2				
Vny/om 9454.545 lb	${ }^{0} 43.6$	${ }_{96}$	14 14	G.1-1				

Member: M5
Shape: RT2X2X0.125
Material: 6063-T5
Length: 67.882 in
I Joint: N9
J Joint: N10
Envelope
Code Check: 0.230 (LC 9)
Report Based On 97 Sections

Member: M5 Shape: RT2X2X0.125 Material: 6063-T5 Length: 67.882 in I Joint: N9 J Joint: N10 Envelope Code Check: 0.230 (LC 9) Report Based On 97 Sections		$\mathrm{Dz} \longrightarrow$ in
	$\mathrm{Vy} \frac{6.031 \text { at } 0 \text { in }}{-2.788 \text { at } 67.882 \text { in }} \mathrm{lb}$	Vz lb
$\mathrm{T} \longrightarrow \mathrm{lb}-\mathrm{ft}$		My \qquad lb-ft
		$f(z) \longrightarrow \mathrm{ksi}$

AA ADM1-15: ASD - Building Code Check

Max Bending Check
Location
Equation
-. 002 at 67.882 in
956.618 at 0 in

Max Shear Check 0.003 (y) (LC 5)
Location 0 in

Max Defl Ratio L/4036

Member: M5A Shape: USC8X4.25 Material: 6061-T6 W Length: 48.374 in I Joint: N11 J Joint: N9A Envelope Code Check: 0.006 (LC 4) Report Based On 97 Sections	Dy \longrightarrow in	
	$\mathrm{Vy} \longrightarrow \mathrm{lb}$	
T	$\mathrm{Mz} \longrightarrow \mathrm{lb-ft}$	3.796 at 25.195 in
$\mathrm{fa} \frac{0 \text { at } 0 \text { in }}{0 \text { at } 48.374 \text { in }} \mathbf{k s i}$	$f(y)$ \qquad ksi	

AA ADM1-15: ASD - Building Code Check

-- Pu was ignored in the calculation of the unity check --

Max Bending Check	0.006 (LC 4)	Max Shear Check	0.001 (z) (LC 4)
Location	0 in	Location	0 in
Equation	H.1-1	Max Defl Ratio	L/10000

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$y-y$ 48.374 in 77.785	48.374 in 15.807
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		48.374 in 48.374 in 48.374 in
Pnc/om 20871.775 lb		133.3	77.8	E.2-1			
Mny/om 919.601 lb -ft				B.5.4.2			
Mnz/om 6229.803 lb -ft				B.5.4.2			
Vny/om 10909.091 lb	19	0	28.9	G.1-1			1
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1			

Member: M6		
Shape: USC8X4.25 Material: 6061-T6 W Length: 18 in I Joint: N9A J Joint: N10A Envelope Code Check: 0.030 (LC 5) Report Based On 97 Sections	Dy \longrightarrow in	
774.486 at 0 in	$\mathrm{Vy} \longrightarrow \mathrm{lb}$	$\mathbf{V z} \xlongequal{5.741 \text { at } 0 \text { in }}$
T [$\mathrm{Mz} \longrightarrow \mathrm{lb}-\mathrm{ft}$	4.23 at 18 in
	$\mathrm{f}(\mathrm{y}) \longrightarrow \mathrm{ksi}$	

AA ADM1-15: ASD - Building Code Check

Max Bending Check	$\mathbf{0 . 0 3 0}$ (LC 5)
Location	0 in
Equation	H.1-1

Max Shear Check 0.001 (z) (LC 5)
Location 0 in
Max Defl Ratio L/10000

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$y-y$ 18 in 28.944		z-z 18 in 5.882
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		$\begin{aligned} & 18 \text { in } \\ & 18 \text { in } \end{aligned}$	
Pnc/om 31290.252 lb		133.3	28.9	E.2-1				
Mny/om $919.601 \mathrm{lb-ft}$				B.5.4.2				
Mnz/om $6420.455 \mathrm{lb}-\mathrm{ft}$				B.5.4.2				
Vny/om 10909.091 lb		0	28.9	G.1-1				
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1				

0.030 (LC 5)
H.1-1

Pnt/om 32909.091 lb
Pnc/om 31290.252 lb Mny/om $919.601 \mathrm{lb}-\mathrm{ft}$ Mnz/om 6420.455 lb -ft
Vny/om 10909.091 lb 0
Vnz/om $9742.909 \mathrm{lb} \quad 19.8$

Member: M7 Shape: USC8X4.25 Material: 6061-T6 W Length: 48 in I Joint: N10A J Joint: N12 Envelope Code Check: 0.007 (LC 5) Report Based On 97 Sections	Dy \longrightarrow in	
	$\mathrm{Vy} \longrightarrow \mathrm{lb}$	9.406 at 48 in
T	Mz - lb-ft	6.411 at 48 in
$\mathrm{fa} \xlongequal{.002 \text { at } 0 \text { in }} \mathrm{ksi}$	$\mathrm{f}(\mathrm{y}) \longrightarrow \mathrm{ksi}$	

AA ADM1-15: ASD - Building Code Check

-- Pu was ignored in the calculation of the unity check --

Max Bending Check	0.007 (LC 5)	Max Shear Check	0.001 (z) (LC 5)
Location	$\mathbf{4 8}$ in	Location	48 in
Equation	H.1-1	Max Defl Ratio	L/10000

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$y-y$ 48 in 77.185		$\begin{aligned} & z-z \\ & 48 \mathrm{in} \\ & 15.685 \end{aligned}$
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		48 in 48 in 48 in	
Pnc/om 20992.705 lb		133.3	77.2	E.2-1				
Mny/om 919.601 lb -ft				B.5.5.2				
Mnz/om 6240.203 lb -ft				B.5.5.2				
Vny/om 10909.091 lb	0	5	28.9	G.1-1				
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1				

AA ADM1-15: ASD - Building Code Check

Max Bending Check	$\mathbf{0 . 0 3 0}$ (LC 5)
Location	0 in
Equation	H.1-1

Max Shear Check 0.001 (z) (LC 5)
Location 0 in
Max Defl Ratio L/10000

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	$\begin{aligned} & \text { Gov } \\ & \text { Eqn } \end{aligned}$	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$y-y$ 24 in 38.592		$\begin{aligned} & z-z \\ & 24 \text { in } \\ & 7.843 \end{aligned}$
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		$\begin{aligned} & 24 \text { in } \\ & 24 \text { in } \end{aligned}$	
Pnc/om 29138.214 lb		133.3	38.6	E.2-1				
Mny/om 919.601 lb -ft				B.5.5.2				
Mnz/om 6420.455 lb -ft				B.5.5.2				
Vny/om 10909.091 lb	0	0	28.9	G.1-1			1	
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1				

AA ADM1-15: ASD - Building Code Check

Max Bending Check
Location
Equation

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$\begin{aligned} & y-y \\ & 12 \text { in } \\ & 19.296 \end{aligned}$		$\begin{aligned} & z-z \\ & 12 \text { in } \\ & 3.921 \end{aligned}$
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		$\begin{aligned} & 12 \text { in } \\ & 12 \text { in } \\ & 12 \text { in } \end{aligned}$	
Pnc/om 32909.091 lb				E.4-1				
Mny/om 919.601 lb -ft				B.5.4.2				
Mnz/om $6420.455 \mathrm{lb}-\mathrm{ft}$				B.5.4.2				
Vny/om 10909.091 lb	0	0	28.9	G.1-1				
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1				

Member: M10
$\begin{array}{lll}\text { Shape: } & \text { USC8X4.25 } \\ \text { Material: } & \text { 6061-T6 W } \\ \text { Length: } & 12 \text { in } \\ \text { I Joint: } & \text { N14 } \\ \text { J Joint: } & \text { N13 } \\ \text { Envelope } & \\ \text { Code Check: } & 0.019 & \text { (LC 5) } \\ \text { Report Based On } 97 & \text { Sections }\end{array}$

A lb	Vy \qquad lb	
T \qquad	$\mathrm{Mz} \longrightarrow \mathrm{lb}-\mathrm{ft}$	
$\mathrm{fa} \longrightarrow \mathrm{ksi}$	$f(y) \longrightarrow k s i$	

AA ADM1-15: ASD - Building Code Check

Max Bending Check
Location
Equation
0.019 (LC 5)
0 in
H.1-1

Max Shear Check
Location
Max Defl Ratio
$0.004(z)(L C 5)$
0 in
L/10000

0 in
L/10000

Slender.		Slender.	Gov		$y-y$	$z-z$
Limit		Ratio	Eqn	Lb	12 in	12 in
$\lambda 1$	$\lambda 2$	λ		KL / r	19.296	3.921

Pnt/om 32909.091 lb
Pnc/om 32909.091 lb
Mny/om $919.601 \mathrm{lb}-\mathrm{ft}$
Mnz/om 6420.455 lb -ft
Vny/om 10909.091 Ib 0
Vnz/om 9742.909 lb

Ratio ${ }_{\lambda}$
D.2-1
B.5.4.2
B.5.4.2
G.1-1
G.3.1
28.9
5.9
E. $4-1 \quad$ L Comp Top 12 in

12 in
12 in
1
1

Member: M11
$\begin{array}{ll}\text { Shape: } & \text { USC8X4.25 } \\ \text { Material: } & \text { 6061-T6 W } \\ \text { Length: } & \mathbf{1 2} \text { in } \\ \text { I Joint: } & \text { N13 } \\ \text { J Joint: } & \text { N15 } \\ \text { Envelope } & \\ \text { Code Check: } & 0.128 \text { (LC 5) } \\ \text { Report Based On } 97 \text { Sections }\end{array}$

	Vy lb	$\mathrm{Vz} \xlongequal{.516 \text { at } 0 \text { in }} \mathrm{lb}$
T	$\mathrm{Mz} \longrightarrow \mathrm{lb}-\mathrm{ft}$	17.46 at 12 in
	$f(y)$ \qquad ksi	

AA ADM1-15: ASD - Building Code Check

	Slender Limit $\lambda 1$	$\lambda 2$	Slender. Ratio λ	Gov Eqn	$\begin{aligned} & \mathrm{Lb} \\ & \mathrm{KL} / \mathrm{r} \end{aligned}$	$\begin{aligned} & y-y \\ & 12 \text { in } \\ & 19.296 \end{aligned}$		$\begin{aligned} & z-z \\ & 12 \text { in } \\ & 3.921 \end{aligned}$
Pnt/om 32909.091 lb				D.2-1	L Comp Top L Comp Bot Torque Length Tau_b Cb		$\begin{aligned} & 12 \text { in } \\ & 12 \text { in } \\ & 12 \text { in } \end{aligned}$	
Pnc/om 32909.091 lb				E.4-1				
Mny/om 919.601 lb -ft				B.5.5.2				
Mnz/om $6420.455 \mathrm{lb}-\mathrm{ft}$				B.5.5.2				
Vny/om 10909.091 lb	0	0	28.9	G.1-1				
Vnz/om 9742.909 lb	19.8	52.6	5.9	G.3.1				

Max Bending Check
Location
Equation

Pnt/om 32909.091 lb
0.128 (LC 5)

12 in
H.1-1

Max Shear Check
Location
Max Defl Ratio
E.4-1 L Comp Top 12 in
B.5.5.
G.3.1
0.000 (z) (LC 5)

0 in
L/10000

Pylom
Mnz/om $6420.455 \mathrm{lb}-\mathrm{ft}$
Vny/om 10909.091 lb 0
Vnz/om $9742.909 \mathrm{lb} \quad 19.8$ 5.9

Member: M12 Shape: USC8X4.25 Material: 6061-T6 W Length: 12 in I Joint: N15 J Joint: N16 Envelope Code Check: 0.019 (LC 5) Report Based On 97 Sections	Dy \longrightarrow in	
$\mathrm{A} \frac{.514 \text { at } 0 \text { in }}{-.703 \text { at } 0 \text { in }} \mathrm{lb}$	$\mathrm{Vy} \longrightarrow \mathrm{lb}$	2.172 at 12 in Vz lb -36.576 at 0 in
T	$\mathrm{Mz} \longrightarrow \mathrm{lb}-\mathrm{ft}$	17.46 at 0 in -17.201 at 12 in
$\mathrm{fa} \frac{0 \text { at } 0 \text { in }}{0 \text { at } 0 \text { in }} \mathrm{ksi}$	$\mathrm{f}(\mathrm{y}) \longrightarrow \mathrm{l}$	

AA ADM1-15: ASD - Building Code Check

-- Pu was ignored in the calculation of the unity check --

Baseplate w/ Large Moment Design

(Review AISC design guide while designing)

Column Baseplate Design:

$$
\begin{array}{ll}
P_{D L}:=.513 \mathrm{kip} & M_{D L}:=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
\mathcal{P}_{S L}:=0 \mathrm{kip} & M_{S L}:=0 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

Weld Design to Column:

$$
\begin{aligned}
& d:=4 \text { in } \quad b:=4 \mathrm{in} \\
& \text { Size }:=0.25 \mathrm{in} \\
& A_{w e}:=\text { Size } \cdot 0.707=0.177 \mathrm{in} \\
& F_{E X X}:=70 \mathrm{ksi} \quad \Omega:=2.00
\end{aligned}
$$

$$
\begin{aligned}
& M_{a}:=M_{D L}+M_{S L}=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
& S_{w}:=(b \cdot d)+\frac{d^{2}}{3}=21.333 \mathrm{in}^{2} \\
& F_{w e l d}:=\frac{M_{a}}{S_{w}}=0.765 \mathrm{kpi} \\
& \quad F_{n w}:=0.6 \cdot F_{E X X}=42 \mathrm{ksi} \\
& \quad R_{n}:=\frac{F_{n w} \cdot A_{w e}}{\Omega}=3.712 \mathrm{kpi}
\end{aligned}
$$

$$
\text { Check } w_{\text {weld }}:=\operatorname{if}\left(F_{\text {weld }}<R_{n}, " \mathrm{OK} ", " \mathrm{NG} "\right)=" \mathrm{OK} "
$$

Use 1/4" Fillet weld all around
Baseplate Size Design: $\quad f_{c}^{\prime}:=3 k s i$

$$
\begin{array}{rl}
\Omega_{c}:=2.5 & d:=4 \mathrm{in} \\
t_{f}:=.25 \mathrm{in} \\
d_{\text {edge }}:=1.5 \mathrm{in}
\end{array}
$$

$$
b:=4 i n
$$

$$
F_{y}:=36 \mathrm{ksi}
$$

1. Compute Required Strength

$$
\begin{aligned}
& M_{a}=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
& P_{a}:=P_{D L}+P_{S L}=0.513 \mathrm{kip}
\end{aligned}
$$

2. Choose Trial Baseplate Size

$$
N:=8 \text { in } \quad B:=10 \text { in }
$$

3. Determine e \& ecrit; check inequality in Eqn. 3.4.4 to determine if a solution exists

$$
\begin{aligned}
& e:=\frac{M_{a}}{P_{a}}=31.813 \mathrm{in} \quad f_{p \max }:=\frac{\left(0.85 \cdot f_{c}^{\prime}\right)}{\Omega_{c}}=1.02 \mathrm{ksi} \\
& e_{\text {crit }}:=\left(\frac{N}{2}\right)-\left(\frac{P_{a}}{2 \cdot q_{\max }}\right)=3.975 \mathrm{in}
\end{aligned}
$$

Check eccentrutity $=$ if $\left(e<e_{\text {cril }}\right.$, "Small Moment Design", "Large Moment Design")

Check $_{\text {eccentricity }}=$ "Large Moment Design"

$f:=\left(\frac{N}{2}\right)-d_{\text {edge }}=2.5$ in (Assuming anchor rod edge distance $=1.5^{\prime \prime}$)
$A_{1}:=\left(f+\frac{N}{2}\right)^{2}=42.25 \mathrm{in}^{2} \quad A_{2}:=\frac{\left(2 \cdot P_{a} \cdot(e+f)\right)}{q_{\max }}=3.451 \mathrm{in}^{2}$
Check $:=$ if $\left(A_{1}>A_{2}\right.$, "Solution Exists", "Pick New Baseplate Size")

Check $=$ "Solution Exists"

4. Determine bearing length, Y, and anchor rod tension, Ta

$$
\begin{aligned}
& Y:=\left(f+\frac{N}{2}\right)-\left(A_{1}-A_{2}\right)^{0.5}=0.271 \mathrm{in} \\
& T_{a}:=\left(q_{\max } \cdot Y\right)-P_{a}=2.253 \mathrm{kip}
\end{aligned}
$$

5. Determine minimum plate thickness

At bearing interface:

$$
m:=\frac{(N-(0.95 \cdot d))}{2}=2.1 \mathrm{in}
$$

$$
t_{p r e q 1}=0.317 \text { in }
$$

At tension interface:

$$
\begin{aligned}
& x:=\frac{N}{2}-\frac{d}{2}+\frac{t_{f}}{2}-d_{e d g e}=0.625 \mathrm{in} \\
& t_{\text {preq2 } 2}:=2.58 \cdot\left(\frac{\hat{T}_{a} \cdot x}{B \cdot F_{y}}\right)^{0.5}=0.161 \mathrm{in}
\end{aligned}
$$

$$
t_{\text {preq } 2}=0.161 \mathrm{in}
$$

Check the thickness using the value of \mathbf{n} :

$$
n:=\frac{B-(0.8 \cdot b)}{2}=3.4 \mathrm{in}
$$

$$
\begin{aligned}
& E_{1}:=Y \cdot\left(n-\frac{Y}{2}\right) \quad E_{2}:=\frac{f_{p \max }}{F_{y}} \\
& t_{p 1}:=2.58 \cdot\left(E_{1} \cdot E_{2}\right)^{0.5}=0.409 \mathrm{in} \\
& t_{p 2}:=1.83 \cdot n \cdot E_{2}^{0.5}=1.047 \mathrm{in} \\
& t_{p r e q 3}:=\operatorname{if}\left(Y<n, t_{p 1}, t_{p 2}\right)=0.409 \mathrm{in}
\end{aligned}
$$

$$
t_{\text {preq } 3}=0.409 \mathrm{in}
$$

$$
t_{\text {required }}:=\max \left(t_{\text {preq } 1}, t_{\text {preq } 2}, t_{\text {preq } 3}\right)=0.409 \text { in }
$$

Use 8"x10"x.75" Baseplate w/ (4) 3/4" anchor bolts w/ a 1.5 edge distance to center of hole at corners of base plate

Baseplate w/ Large Moment Design

(Review AISC design guide while designing)

Column Baseplate Design:

$$
\begin{array}{ll}
P_{D L}:=.513 \mathrm{kip} & M_{D L}:=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
P_{S L}:=0 \mathrm{kip} & M_{S L}:=0 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

Weld Design to Column:

$$
\begin{aligned}
& d:=4 \text { in } \quad b:=4 \mathrm{in} \\
& \text { Size }:=0.25 \mathrm{in} \\
& A_{\text {we }}:=\text { Size } \cdot 0.707=0.177 \mathrm{in} \\
& F_{E X X}:=70 \mathrm{ksi} \quad \Omega:=2.00
\end{aligned}
$$

$$
\begin{aligned}
& M_{a}:=M_{D L}+M_{S L}=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
& S_{w}:=(b \cdot d)+\frac{d^{2}}{3}=21.333 \mathrm{in}^{2} \\
& F_{w e l d}:=\frac{M_{a}}{S_{w}}=0.765 \mathrm{kpi} \\
& \quad F_{n w}:=0.6 \cdot F_{E X X}=42 \mathrm{ksi} \\
& \quad R_{n}:=\frac{F_{n w} \cdot A_{w e}}{\Omega}=3.712 \mathrm{kpi}
\end{aligned}
$$

$$
\text { Check } w_{\text {weld }}:=\operatorname{if}\left(F_{\text {weld }}<R_{n}, " \mathrm{OK} ", " \mathrm{NG} "\right)=" \mathrm{OK} "
$$

Use 1/4" Fillet weld all around
Baseplate Size Design: $\quad f_{c}^{\prime}:=3 k s i$

$$
\begin{array}{rl}
\Omega_{c}:=2.5 & d:=4 \mathrm{in} \\
t_{f}:=.25 \mathrm{in} \\
d_{\text {edge }}:=1.5 \mathrm{in}
\end{array}
$$

$$
b:=4 \mathrm{in}
$$

$$
F_{y}:=35 \mathrm{ksi}
$$

1. Compute Required Strength

$$
\begin{aligned}
& M_{a}=1.36 \mathrm{ft} \cdot \mathrm{kip} \\
& P_{a}:=P_{D L}+P_{S L}=0.513 \mathrm{kip}
\end{aligned}
$$

2. Choose Trial Baseplate Size

$$
N:=8 \text { in } \quad B:=10 i n
$$

3. Determine e \& ecrit; check inequality in Eqn. 3.4.4 to determine if a solution exists

$$
\begin{aligned}
& e:=\frac{M_{a}}{P_{a}}=31.813 \mathrm{in} \quad f_{p \max }:=\frac{\left(0.85 \cdot f_{c}^{\prime}\right)}{\Omega_{c}}=1.02 \mathrm{ksi} \\
& e_{\text {crit }}:=\left(\frac{N}{2}\right)-\left(\frac{P_{a}}{2 \cdot q_{\max }}\right)=3.975 \mathrm{in}
\end{aligned}
$$

Check eccentrutity $=$ if $\left(e<e_{\text {cril }}\right.$, "Small Moment Design", "Large Moment Design")

Check $_{\text {eccentricity }}=$ "Large Moment Design"

$f:=\left(\frac{N}{2}\right)-d_{\text {edge }}=2.5$ in (Assuming anchor rod edge distance $=1.5^{\prime \prime}$)
$A_{1}:=\left(f+\frac{N}{2}\right)^{2}=42.25 \mathrm{in}^{2} \quad A_{2}:=\frac{\left(2 \cdot P_{a} \cdot(e+f)\right)}{q_{\max }}=3.451 \mathrm{in}^{2}$
Check $:=$ if $\left(A_{1}>A_{2}\right.$, "Solution Exists", "Pick New Baseplate Size")

Check $=$ "Solution Exists"

4. Determine bearing length, Y, and anchor rod tension, Ta

$$
\begin{aligned}
& Y:=\left(f+\frac{N}{2}\right)-\left(A_{1}-A_{2}\right)^{0.5}=0.271 \mathrm{in} \\
& T_{a}:=\left(q_{\max } \cdot Y\right)-P_{a}=2.253 \mathrm{kip}
\end{aligned}
$$

5. Determine minimum plate thickness

At bearing interface:

$$
m:=\frac{(N-(0.95 \cdot d))}{2}=2.1 \mathrm{in}
$$

$$
t_{\text {preq } 1}=0.321 \mathrm{in}
$$

At tension interface:

$$
\begin{aligned}
& x:=\frac{N}{2}-\frac{d}{2}+\frac{t_{f}}{2}-d_{e d g e}=0.625 \mathrm{in} \\
& t_{\text {preq2 }}:=2.58 \cdot\left(\frac{\hat{T}_{a} \cdot x}{B \cdot F_{y}}\right)^{0.5}=0.164 \mathrm{in}
\end{aligned}
$$

$$
t_{\text {preq } 2}=0.164 \mathrm{in}
$$

Check the thickness using the value of \mathbf{n} :

$$
n:=\frac{B-(0.8 \cdot b)}{2}=3.4 \mathrm{in}
$$

$$
\begin{aligned}
& E_{1}:=Y \cdot\left(n-\frac{Y}{2}\right) \quad E_{2}:=\frac{f_{\text {pmax }}}{F_{y}} \\
& t_{p 1}:=2.58 \cdot\left(E_{1} \cdot E_{2}\right)^{0.5}=0.414 \mathrm{in} \\
& t_{p 2}:=1.83 \cdot n \cdot E_{2}^{0.5}=1.062 \mathrm{in} \\
& t_{\text {preq3 }}:=\operatorname{if}\left(Y<n, t_{p 1}, t_{p 2}\right)=0.414 \mathrm{in}
\end{aligned}
$$

$$
t_{\text {preq } 3}=0.414 \text { in }
$$

$$
t_{\text {required }}:=\max \left(t_{\text {preq } 1}, t_{\text {preq } 2}, t_{\text {preq } 3}\right)=0.414 \text { in }
$$

Use 8"x10"x.75" Baseplate w/ (4) 3/4" anchor bolts w/ a 1.5 edge distance to center of hole at corners of base plate

