STRUCTURAL CALCULATIONS

Rooftop Screen Rail Design

Prepared For:

Mitchell Bolton PalmSHEILD 12330 Cary Circle La Vista, NE 68128

Prepared By:

RISE Structural Associates 1405 Prairie Parkway – Suite B West Fargo, North Dakota 58078

RISE Project No. 24075

April 4th, 2024

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of South Dakota.

Justin Chistensen South Dakota License Number Date

DATE 9/1/24 NO. 24075 3285 Fiechtner Dr. S. • Ste. B Fargo, North Dakota 58103 Phone: (701) 318-1782 PROJECT Rooftop Screen Wall Rail Desirn CTURAL ASSOCIATES INC. www.riseincorp.com SUBJECT_ Wind= V=120 mph Misk lategory = I Exposure = C SEE MELAWIND -7 F= 756,16/(8'× 5') = 18.9 psf Post Height = 8'-0" spaced 5' 0" Aport Wy = 18,9 pst x 5' = 94.5 plf M3 AM or M4 h. E. K. SEE RESA = HSS 4×4×1/4" OK HSS DX > x 1/8" Kicker OK SEE 6754 = 9×4 × 1/4" Aluminum 6063-152 OK 2 x 2 x 1/8 " Aluminum 6063-TS2 Wher OK K, = Uplit = 756 16 Down= 766 16 Shear = 753 % Kz = Uplit 756 10 = 64016 Down= 760 16 Sher = 750 16 75616 76016 M8 1 1 M6 Channels = 8"x 2.29" x .25" 6061 -76 AS SEE RISA CALLS MSA

3285 Fiechtner Dr. S. • Ste. B Fargo, North Dakota 58103 Phone: (701) 318-1782

DATE 4/3/24 NO. 24075

PROJECT Kodtop Screen Kail Design

RUCTURAL ASSOCIATES INC. www.riseincorp.com SUBJECT SEE KISK CALLS Pedestal Desing Use 8" x 2.29" x . 25" Channels Alumium Channels 606176.AS -mll Tension = 3629. 16 - - 8" 15" 8" 15" Compression = 3629 16 1512 16++ x12 = 18,144 . 15= #362916 Base Plate Design $W_{W} = 94.5 \text{ MF x } 8 = 3.78 \text{ x } 4 = 1.512 \text{ 16.64}$ Z = Momentabout Base = 1.51 Kip.6418 Use 8×8×,75" of 8"× 10"×.75" Kicker Mounting Bracket Tensile Strength = Pn = Fy Ag = (36ks) (3/8" × 10") 1.67 = 80,84 kips > 700 1b Place Attachment to Post Plate OK STEEL Use 1/4" Fillet Weld 1/1" fillet weld for steel = 3710/6/in Weld Length = 4" x 3710 = 1484016 >100 = (35 451) 38 x10) 2" Weld on Top + Bill, 1.67 - check Ned, Factors Weld OIL = 78,59 W.ps > 76016 1/4" Filet weld for Aluminum PLATE OF ALUM Kn=F(, .707(.75) = 15KSi (.707)(.75) = 2.65125 Kip.in

2651 16/: A 41'= 16,60516 776016

MecaWind v2405

Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2020

boroware percipper. Hood	2000101200			<u>, , , , , , , , , , , , , , , , , , , </u>	119110 0 1010	
Calculations Prepared by: Client: 0		Calcula	tions Prepar	ed For:		
Date: Apr 04, 2024 Designer: 0		Projec Locati	t #: on:	0		
File Location : C:\Users\kmswo\Dr	opbox\24075				nd wnd	
	020001(210)0_	- 100100	p bereen nar	r Debryn (wr		
Basic Wind Parameters Wind Load Standard	= ASCE 7-16	Expos	ure Category		= C	
Wind Load Standard Wind Design Speed	= 120.0 mph	n Risk	ure Category Category		= II	
Structure Type	= Other	Other	Structure T	уре	= Freestanding Wal	.1
General Wind Settings						
Incl_LF = Include ASD Load Fact	or of 0.6 in	n Pressu	res		= True	
DynType = Dynamic Type of Struc	ture				= Rigid	
Zg = Altitude (Ground Elev Bdist = Base Elevation of Str	ation) above	e Sea Le	vel		= Rigid = 0.000 ft = 0.000 ft	
Bdist = Base Elevation of Str	ucture					
Reacs = Show the Base Reactio MWFRSType = MWFRS Method Selected	ns in the ou	itput			= False = Ch 29	
MWFK51ype - MWFK5 Method Selected					- 011 2.5	
Topographic Factor per Fig 26.8-1						
Topo = Topographic Feature Kzt = Topographic Factor					= None = 1.000	
					- 1.000	
Freestanding Wall Inputs						
h : Height to Top of Wall Lr : Dimension of return corner e : Solidity Ratio	= 8.000 ft	В	: Horizontal	Width of W	all = 5.000 ft	
Lr : Dimension of return corner	= 5.000 It	s +	· Thickness	eignt or wa of Wall	II = 8.000 IC = 0.333 ft	
Dbl : Double Faced & all sides e	nclosed= Fal	lse IsC	ol: Is the W	all Support	ed on Columns= False	
				11		
Exposure Constants per Table 26.1	1-1:	7	m-bl- 06 1	1 1 0+	000 000 55	
Alpha: Table 26.11-1 Const	= 9.500 = 0.105	Zg: Bt·	Table 20.1	1-1 Const	= 1 000	
Am: Table 26.11-1 Const	= 0.154	Bm:	Table 26.1	1-1 Const	= 0.650	
Alpha: Table 26.11-1 Const At: Table 26.11-1 Const Am: Table 26.11-1 Const C: Table 26.11-1 Const	= 0.200	Eps:	Table 26.1	1-1 Const	= 0.200	
Gust Factor Calculation: Gust Factor Category I Rigid Stru	ctures - Sim	nlified	Method			
G1 = For Rigid Structures	(Nat. Freg.>	- 1 Hz) u	se 0.85		= 0.85	
Gust Factor Category II Rigid Str	uctures - Co	omplete .	Analysis			
Zm = Max(0.6 * Ht, Zmin)					= 15.000 ft	
$Izm = Cc * (33 / Zm) ^ 0.16$	7				= 0.228	
Lzm = L * (Zm / 33) ^ Eps B = Structure Width Norma	1 to Wind				= 427.057 = 5.000 ft	
O = (1 / (1 + 0.63 * (B)))	+ Ht.) / Lzm)	^0.63))	^0.5			
Q = (1 / (1 + 0.63 * (B))) G2 = 0.925*((1+0.7*1zm*3.4))	*Q)/(1+0.7*3	3.4*Izm))		= 0.967 = 0.908	
Gust Factor Used in Analysis						
G = Lessor Of G1 Or G2					= 0.850	
Main Wind Force Resisting System						
LF = Load Factor based upo		ı				
hs = Overall height of str					= 8.000 ft	
h = Mean Roof Height abov		$E(=\infty) \wedge ($)/]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	blo 26 10 1	= 8.000 ft	
Kh = $Z < 15$ ft [4.572 m] Kzt = Topographic Factor is						
Kd = Wind Directionality F				opecified	= 0.85	
qh = (0.00256 * Kh * Kzt *	Kd * Ke * V	7^2) * L	F		= 15.96 psf	
MWFRS Pressures on Freestanding W	all por Fig	20 3-1.				
R = Reduction factor to a			: (1-(1-e)^	1.5)	= 0.911	
Rc = Reduction factor for					= 0.800	
As = Gross Area of Wall:	B * s				= 40.00 sq ft	
B/s = Aspect Ratio: B / s					= 0.625	
s/h = Clearance Ratio: s / Cf = Net Force Coefficient		and D ~	or Fig 20 2	1	= 1.000 = 1.530	
e = Not Double Faced, Cas				±	= 1.530 = 0.2	
		-				
Case A: Resultant force acts nor						
and since $s/h = 1$ then c	onsider forc	ce actin	g U.U5*s abo	ve the geom	etric center	
0.05*s = Since s/h=1, load app	lied at vert	cical of	fset from qe	om center	= 0.400 ft	
F = Design Wind force: q					= 756 lb	

Case B:	Resultant force acts normal to face at a distance from the geomet center toward the windward edge equal to e times the average widt and since $s/h = 1$ then consider force acting 0.05*s above the geo	h
0.05*s	<pre>= Since s/h=1, load applied at vertical offset from geom center</pre>	= 0.400 ft
Dx	= Force Offset from Center toward windward edge: e * B	= 1.000 ft
F	= Design Wind force: qh * G * Cf * As * R	= 756 lb

Case C: Since $B/s\,<\,2$ then Case C need not be considered

28.9 G.1-1 Tau_b **5.9 G.3.1** Cb

1

Vny/om 10909.091 lb

Vnz/om 9742.909 lb

0

19.8

0

52.6

ate: 4/3/202	
	Baseplate w/ Large Moment Design
	(Review AISC design guide while designing)
<u>olumn Base</u> l	plate Design:
	$D_{DL} := .513 \ kip$ $M_{DL} := 1.36 \ ft \cdot kip$
	$M_{SL} \coloneqq 0 \ \boldsymbol{kip}$ $M_{SL} \coloneqq 0 \ \boldsymbol{ft} \cdot \boldsymbol{kip}$
Weld Design t	to Column: $d := 4$ in $b := 4$ in
	Size = 0.25 in
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$F_{EXX} \coloneqq 70 \ ksi$ $\Omega \coloneqq 2.00$
	$M_a := M_{DL} + M_{SL} = 1.36 \ ft \cdot kip$
	d^2 of and d^2
	$S_w := (b \cdot d) + \frac{d^2}{3} = 21.333 \ in^2$
	$F_{weld} \coloneqq \frac{M_a}{S_m} = 0.765 \ kpi$
	$r_{weld} = \frac{1}{S_w} = 0.105 \text{ kpc}$
	$F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \ ksi$
	$R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ \textbf{kpi}$
	$Check_{weld} \coloneqq if(F_{weld} < R_n, "OK", "NG") = "OK"$
	Use 1/4" Fillet weld all around
Basenlate Size	e Design: $f' - 3 kei \qquad 0 - 25 \qquad d - 4 in \qquad b - 4 in$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$d_{edge} \coloneqq 1.5$ in
<u>1. Com</u>	npute Required Strength
	$M_a = 1.36 \ ft \cdot kip$
	$M_a = 1.36 \ ft \cdot kip$ $P_a := P_{DL} + P_{SL} = 0.513 \ kip$ $d_{edge} := 1.5 \ in$ ose Trial Baseplate Size $N := 8 \ in$ $B := 10 \ in$
<u>2. Cnoo</u>	ose Trial Baseplate Size N:=8 in B:=10 in
	$N \coloneqq 8 in$ $B \coloneqq 10 in$
	O ₄
	3

3. Determine e & ecrit; check inequality in Eqn. 3.4.4 to determine if a solution exists

$$e:=\frac{M_a}{P_a}=31.813 \text{ in} \qquad f_{pmax}:=\frac{(0.85 \cdot f'_c)}{\Omega_c}=1.02 \text{ ksi}$$

$$e_{crit}:=\left(\frac{N}{2}\right) - \left(\frac{P_a}{2 \cdot q_{max}}\right) = 3.975 \text{ in} \qquad q_{max}:=f_{pmax} \cdot B=10.2 \text{ kpi}$$
Check_{eccentricity}:= if ($e < e_{crit}$, "Small Moment Design", "Large Moment Design")
Check_{eccentricity}:= if ($e < e_{crit}$, "Small Moment Design", "Large Moment Design")

$$f:=\left(\frac{N}{2}\right) - d_{vdye} = 2.5 \text{ in} \qquad (Assuming anchor rod edge distance = 1.5")$$

$$A_1:=\left(f+\frac{N}{2}\right)^2 = 42.25 \text{ in}^2 \qquad A_2:=\frac{(2 \cdot P_a \cdot (e+f))}{q_{max}} = 3.451 \text{ in}^2$$
Check := if ($A_1 > A_2$, "Solution Exists", "Pick New Baseplate Size")
Check = "Solution Exists"

4. Determine bearing length, Y, and anchor rod tension, Ta

indre information

$$\begin{split} Y &\coloneqq \left(f + \frac{N}{2}\right) - \left(A_1 - A_2\right)^{0.5} = 0.271 ~\textit{in} \\ T_a &\coloneqq \left(q_{max} \cdot Y\right) - P_a = 2.253 ~\textit{kip} \end{split}$$

5. Determine minimum plate thickness

At bearing interface:

$$m := \frac{(N - (0.95 \cdot d))}{2} = 2.1 \text{ in}$$

$$E_{1} \coloneqq Y \cdot \left(m - \frac{Y}{2}\right) \qquad E_{2} \coloneqq \frac{J_{pmax}}{F_{y}}$$

$$t_{p1} \coloneqq 2.58 \cdot (E_{1} \cdot E_{2})^{0.5} = 0.317 \text{ in}$$

$$t_{p2} \coloneqq 1.83 \cdot m \cdot E_{2}^{0.5} = 0.647 \text{ in}$$

$$t_{preq1} \coloneqq \text{if} \left(Y < m, t_{p1}, t_{p2}\right) = 0.317 \text{ in}$$

$$t_{preg1} = 0.317$$
 in

At tension interface:

$$x \coloneqq \frac{N}{2} - \frac{d}{2} + \frac{t_f}{2} - d_{edge} = 0.625 \ in$$

$$t_{preq2}$$
:=2.58 $\cdot \left(\frac{T_a \cdot x}{B \cdot F_y}\right)^{0.5}$ =0.161 in
 t_{preq2} =0.161 in

$$t_{preq2} \!=\! 0.161 \; in$$

Check the thickness using the value of n: CK

$$n := \frac{B - (0.8 \cdot b)}{2} = 3.4 \text{ in}$$

$$E_1 := Y \cdot \left(n - \frac{Y}{2}\right) \qquad E_2 := \frac{f_{pmax}}{F_y}$$

$$t_{p1} := 2.58 \cdot (E_1 \cdot E_2)^{0.5} = 0.409 \text{ in}$$

$$t_{p2} := 1.83 \cdot n \cdot E_2^{0.5} = 1.047 \text{ in}$$

$$t_{preq3} := \text{if} \left(Y < n, t_{p1}, t_{p2}\right) = 0.409 \text{ in}$$

$$t_{preq3} = 0.409 \text{ in}$$

Baseplate w/ Large Moment Design (Review AISC design guide while designing) PDL:=.513 kip M_{DL} :=1.36 ft·kip P_{DL} :=.513 kip M_{DL} :=1.36 ft·kip P_{DL} :=.513 kip M_{DL} :=0 ft·kip Weld Design to Column: d:=4 in $Size:=0.25$ in $A_{we}:=Size:0.707=0.177$ in $F_{EXX}:=70$ ksi $\Omega:=2.00$ $M_a:=M_{DL}+M_{SL}=1.36$ ft·kip $S_{w}:=(b\cdot d) + \frac{d^2}{3} = 21.333$ in ² $S_{w}:=(b\cdot d) + \frac{d^2}{3} = 21.333$ in ² $F_{weld} = \frac{M_a}{S_w} = 0.765$ kpi $F_{weld} = \frac{M_a}{S_w} = 0.765$ kpi $F_{nw}:= 0.6 \cdot F_{EXX} = 42$ koi $R_n := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712$ kpi $Check_{weld} := if (F_{weld} < R_n, "OK", "NG") = "OK"$ Use 1/4" Fillet weld all around Baseplate Size Design: $f_c:=3$ ksi $\Omega_c:=2.5$ $d:=4$ in $M_a=1.36$ ft·kip $P_{a}:=P_{DL}+P_{SL}=0.513$ kip $D_{a}:=2.5$ $d:=4$ in $M_a=1.36$ ft·kip $P_{a}:=2.0$ $M_a=1.36$ $M_a=2.5$ $M_a=4$ in $M_a=1.36$ $M_a=1.36$ <	ate: 4/3/2024		
blumn Baseplate Design: $P_{DL} \coloneqq .513 \ kip \qquad M_{DL} \coloneqq 1.36 \ ft \cdot kip \qquad M_{SL} \coloneqq 0 \ ft \cdot kip \qquad M_{SL} \equiv 0 \ ft Kip \ Kip \qquad Kip \qquad Kip \qquad Kip \ Ki$	<u>K</u>		
$\begin{array}{c} P_{DL}\coloneqq 513 \ \textit{kip} & M_{DL}\coloneqq 1.36 \ \textit{ft} \cdot \textit{kip} \\ M_{SL}\coloneqq 0 \ \textit{kip} & M_{SL}\coloneqq 0 \ \textit{ft} \cdot \textit{kip} \\ \hline M_{SL}\coloneqq 0.25 \ \textit{in} \\ A_{we}\coloneqq 52e \cdot 0.707 = 0.177 \ \textit{in} \\ F_{EXX}\coloneqq 70 \ \textit{ksi} \qquad \Omega \coloneqq 2.00 \\ \hline M_{a}\coloneqq M_{DL} + M_{SL} = 1.36 \ \textit{ft} \cdot \textit{kip} \\ \hline S_{w}\coloneqq (b \cdot d) + \frac{d^{2}}{3} = 21.333 \ \textit{in}^{2} \\ F_{weld}\coloneqq \frac{M_{a}}{S_{w}} = 0.765 \ \textit{kpi} \\ \hline F_{nw}\coloneqq 0.6 \cdot F_{EXX} = 42 \ \textit{ksi} \\ R_{n}\coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ \textit{kpi} \\ \hline \\ \hline Check_{weld}\coloneqq \textit{if} \left(F_{weld} < R_{n}, \text{``OK''}, \text{``NG''}\right) = \text{``OK''} \\ \hline \\ \hline \\ \hline \\ \hline \\ Baseplate \ Size \ Design: f'_{c}\coloneqq 3 \ \textit{ksi} \\ F_{y}\coloneqq 35 \ \textit{ksi} \\ \end{array}$	·		Jide while designing)
$\begin{array}{c} P_{SL} \coloneqq 0 \ \textit{kip} & M_{SL} \coloneqq 0 \ \textit{ft} \cdot \textit{kip} \\ \hline \\ \underline{Weld \ \text{Design to Column:}} & d \coloneqq 4 \ \textit{in} & b \coloneqq 4 \ \textit{in} \\ Size \coloneqq 0.25 \ \textit{in} \\ A_{we} \coloneqq 5ize \cdot 0.707 = 0.177 \ \textit{in} \\ F_{EXX} \coloneqq 70 \ \textit{ksi} & \Omega \coloneqq 2.00 \\ \hline \\ M_a \coloneqq M_{DL} + M_{SL} \equiv 1.36 \ \textit{ft} \cdot \textit{kip} \\ S_w \coloneqq (b \cdot d) + \frac{d^2}{3} \equiv 21.333 \ \textit{in}^2 \\ F_{weld} \coloneqq \frac{M_a}{S_w} \equiv 0.765 \ \textit{kpi} \\ F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \ \textit{ksi} \\ R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ \textit{kpi} \\ \hline \\ Check_{weld} \coloneqq \textit{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''} \\ \hline \\ \underline{Baseplate \ Size \ Design:} f'_c \coloneqq 3 \ \textit{ksi} \\ F_y \coloneqq 35 \ \textit{ksi} \\ \end{array}$	olumn Baseplate	Design:	
$\begin{array}{c} P_{SL} \coloneqq 0 \ \textit{kip} & M_{SL} \coloneqq 0 \ \textit{ft} \cdot \textit{kip} \\ \hline \\ \underline{Weld \ \text{Design to Column:}} & d \coloneqq 4 \ \textit{in} & b \coloneqq 4 \ \textit{in} \\ Size \coloneqq 0.25 \ \textit{in} \\ A_{we} \coloneqq 5ize \cdot 0.707 = 0.177 \ \textit{in} \\ F_{EXX} \coloneqq 70 \ \textit{ksi} & \Omega \coloneqq 2.00 \\ \hline \\ M_a \coloneqq M_{DL} + M_{SL} \equiv 1.36 \ \textit{ft} \cdot \textit{kip} \\ S_w \coloneqq (b \cdot d) + \frac{d^2}{3} \equiv 21.333 \ \textit{in}^2 \\ F_{weld} \coloneqq \frac{M_a}{S_w} \equiv 0.765 \ \textit{kpi} \\ F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \ \textit{ksi} \\ R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ \textit{kpi} \\ \hline \\ Check_{weld} \coloneqq \textit{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''} \\ \hline \\ \underline{Baseplate \ Size \ Design:} f'_c \coloneqq 3 \ \textit{ksi} \\ F_y \coloneqq 35 \ \textit{ksi} \\ \end{array}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{aligned} Size := 0.25 \text{ in} \\ A_{we} := Size \cdot 0.707 = 0.177 \text{ in} \\ F_{EXX} := 70 \text{ ksi} \qquad \Omega := 2.00 \end{aligned}$ $M_a := M_{DL} + M_{SL} = 1.36 \text{ ft} \cdot \text{kip} \\ S_w := (b \cdot d) + \frac{d^2}{3} = 21.333 \text{ in}^2 \\ F_{weld} := \frac{M_a}{S_w} = 0.765 \text{ kpi} \\ F_{nw} := 0.6 \cdot F_{EXX} = 42 \text{ ksi} \\ R_n := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi} \\ \hline Check_{weld} := \text{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''} \\ \hline \text{Use 1/4'' Fillet weld all around} \\ \hline Baseplate Size Design: f'_c := 3 \text{ ksi} \\ F_y := 35 \text{ ksi} \\ \hline C_f := .25 \text{ in} \end{aligned}$	$P_{SL} \coloneqq 0$	kip $M_{SL} := 0 ft$	• kip
$\begin{aligned} Size := 0.25 \text{ in} \\ A_{we} := Size \cdot 0.707 = 0.177 \text{ in} \\ F_{EXX} := 70 \text{ ksi} \qquad \Omega := 2.00 \end{aligned}$ $M_a := M_{DL} + M_{SL} = 1.36 \text{ ft} \cdot \text{kip} \\ S_w := (b \cdot d) + \frac{d^2}{3} = 21.333 \text{ in}^2 \\ F_{weld} := \frac{M_a}{S_w} = 0.765 \text{ kpi} \\ F_{nw} := 0.6 \cdot F_{EXX} = 42 \text{ ksi} \\ R_n := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi} \\ \hline Check_{weld} := \text{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''} \\ \hline \text{Use 1/4'' Fillet weld all around} \\ \hline Baseplate Size Design: f'_c := 3 \text{ ksi} \\ F_y := 35 \text{ ksi} \\ \hline C_f := .25 \text{ in} \end{aligned}$	Weld Design to Col	umn: d - 4 in h - 4 in	
$\begin{split} M_a \coloneqq M_{DL} + M_{SL} &= 1.36 \ \textit{ft} \cdot \textit{kip} \\ S_w \coloneqq (b \cdot d) + \frac{d^2}{3} &= 21.333 \ \textit{in}^2 \\ F_{weld} \coloneqq \frac{M_a}{S_w} &= 0.765 \ \textit{kpi} \\ F_{nw} \coloneqq 0.6 \cdot F_{EXX} &= 42 \ \textit{ksi} \\ R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} &= 3.712 \ \textit{kpi} \\ \hline Check_{weld} \coloneqq \textit{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''} \right) &= \text{``OK''} \\ \hline \textit{Use 1/4'' Fillet weld all around} \\ \hline \textit{Baseplate Size Design:} f'_c \coloneqq 3 \ \textit{ksi} \\ F_y \coloneqq 35 \ \textit{ksi} \\ \hline \ mathbf{in} \\ chi = 2.5 \ \textit{in} \\ \hline \ mathbf{in} \\ chi = 4 \ \textit{in} \\ f_f \coloneqq .25 \ \textit{in} \\ \end{split}$	Weld Design to edi	$\frac{1}{2111111} \qquad a = 4 \ th \qquad 0 = 4 \ th \\ Size = 0.25 \ in$	
$\begin{split} M_a \coloneqq M_{DL} + M_{SL} &= 1.36 \ \textit{ft} \cdot \textit{kip} \\ S_w \coloneqq (b \cdot d) + \frac{d^2}{3} &= 21.333 \ \textit{in}^2 \\ F_{weld} \coloneqq \frac{M_a}{S_w} &= 0.765 \ \textit{kpi} \\ F_{nw} \coloneqq 0.6 \cdot F_{EXX} &= 42 \ \textit{ksi} \\ R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} &= 3.712 \ \textit{kpi} \\ \hline Check_{weld} \coloneqq \textit{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''} \right) &= \text{``OK''} \\ \hline \textit{Use 1/4'' Fillet weld all around} \\ \hline \textit{Baseplate Size Design:} f'_c \coloneqq 3 \ \textit{ksi} \\ F_y \coloneqq 35 \ \textit{ksi} \\ \hline \ mathbf{in} \\ chi = 2.5 \ \textit{in} \\ \hline \ mathbf{in} \\ chi = 4 \ \textit{in} \\ f_f \coloneqq .25 \ \textit{in} \\ \end{split}$		$A = Size \cdot 0.707 - 0.1$	77 in
$\begin{split} M_a \coloneqq M_{DL} + M_{SL} &= 1.36 \ \textit{ft} \cdot \textit{kip} \\ S_w \coloneqq (b \cdot d) + \frac{d^2}{3} &= 21.333 \ \textit{in}^2 \\ F_{weld} \coloneqq \frac{M_a}{S_w} &= 0.765 \ \textit{kpi} \\ F_{nw} \coloneqq 0.6 \cdot F_{EXX} &= 42 \ \textit{ksi} \\ R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} &= 3.712 \ \textit{kpi} \\ \hline Check_{weld} \coloneqq \textit{if} \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''} \right) &= \text{``OK''} \\ \hline \textit{Use 1/4'' Fillet weld all around} \\ \hline \textit{Baseplate Size Design:} f'_c \coloneqq 3 \ \textit{ksi} \\ F_y \coloneqq 35 \ \textit{ksi} \\ \hline \ mathbf{in} \\ chi = 2.5 \ \textit{in} \\ \hline \ mathbf{in} \\ chi = 4 \ \textit{in} \\ f_f \coloneqq .25 \ \textit{in} \\ \end{split}$		$F_{\text{max}} = 70 \text{ ksi}$	-2.00
$S_{w} := (b \cdot d) + \frac{d^{2}}{3} = 21.333 \text{ in}^{2}$ $F_{weld} := \frac{M_{a}}{S_{w}} = 0.765 \text{ kpi}$ $F_{nw} := 0.6 \cdot F_{EXX} = 42 \text{ ksi}$ $R_{n} := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi}$ $Check_{weld} := \text{if} \left(F_{weld} < R_{n}, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $Use 1/4" \text{ Fillet weld all around}$ $Baseplate Size Design: f'_{c} := 3 \text{ ksi} \qquad \Omega_{c} := 2.5 \qquad d := 4 \text{ in} \qquad b := 4 \text{ in} \\ F_{y} := 35 \text{ ksi} \qquad \Omega_{c} := 2.5 \text{ in} \qquad b := 4 \text{ in} \qquad b :=$			2.00
$S_{w} := (b \cdot d) + \frac{d^{2}}{3} = 21.333 \text{ in}^{2}$ $F_{weld} := \frac{M_{a}}{S_{w}} = 0.765 \text{ kpi}$ $F_{nw} := 0.6 \cdot F_{EXX} = 42 \text{ ksi}$ $R_{n} := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi}$ $Check_{weld} := \text{if} \left(F_{weld} < R_{n}, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $Use 1/4" \text{ Fillet weld all around}$ $Baseplate Size Design: f'_{c} := 3 \text{ ksi} \qquad \Omega_{c} := 2.5 \qquad d := 4 \text{ in} \qquad b := 4 \text{ in} \\ F_{y} := 35 \text{ ksi} \qquad \Omega_{c} := 2.5 \text{ in} \qquad b := 4 \text{ in} \qquad b :=$	Λ	$M_a \coloneqq M_{DL} + M_{SL} = 1.36 \ ft \cdot kip$	
$F_{weld} \coloneqq \frac{M_a}{S_w} = 0.765 \text{ kpi}$ $F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \text{ ksi}$ $R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi}$ $Check_{weld} \coloneqq \text{if } \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $\frac{\text{Use 1/4'' Fillet weld all around}}{F_y \coloneqq 35 \text{ ksi}} \qquad \Omega_c \coloneqq 2.5 \qquad d \coloneqq 4 \text{ in } b \coloneqq 4 \text{ in } f_y \coloneqq 35 \text{ ksi}$			
$F_{weld} \coloneqq \frac{M_a}{S_w} = 0.765 \text{ kpi}$ $F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \text{ ksi}$ $R_n \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi}$ $Check_{weld} \coloneqq \text{if } \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $\frac{\text{Use 1/4'' Fillet weld all around}}{F_y \coloneqq 35 \text{ ksi}} \qquad \Omega_c \coloneqq 2.5 \qquad d \coloneqq 4 \text{ in } b \coloneqq 4 \text{ in } f_y \coloneqq 35 \text{ ksi}$		$w := (b \cdot d) + \frac{a}{2} = 21.333 \ in^2$	
$F_{nw} := 0.6 \cdot F_{EXX} = 42 \ ksi$ $R_n := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ kpi$ $Check_{weld} := if \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $Use 1/4'' \text{Fillet weld all around}$ $Baseplate Size Design: \begin{array}{c} f'_c := 3 \ ksi \\ F_y := 35 \ ksi \end{array} \Omega_c := 2.5 \ d := 4 \ in \\ f'_f := .25 \ in \end{array} b := 4 \ in \\ f'_f := .25 \ in \end{array}$			
$F_{nw} := 0.6 \cdot F_{EXX} = 42 \ ksi$ $R_n := \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \ kpi$ $Check_{weld} := if \left(F_{weld} < R_n, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $Use 1/4'' \text{Fillet weld all around}$ $Baseplate Size Design: \begin{array}{c} f'_c := 3 \ ksi \\ F_y := 35 \ ksi \end{array} \Omega_c := 2.5 \ d := 4 \ in \\ f'_f := .25 \ in \end{array} b := 4 \ in \\ f'_f := .25 \ in \end{array}$	<i>F</i>	$weld := \frac{ma}{C} = 0.765 \ kpi$	
$R_{n} \coloneqq \frac{F_{nw} \cdot A_{we}}{\Omega} = 3.712 \text{ kpi}$ $Check_{weld} \coloneqq \text{if} \left(F_{weld} < R_{n}, \text{``OK''}, \text{``NG''}\right) = \text{``OK''}$ $Use 1/4" \text{ Fillet weld all around}$ $Baseplate Size Design: \begin{array}{c} f'_{c} \coloneqq 3 \text{ ksi} \\ F_{y} \coloneqq 35 \text{ ksi} \end{array} \Omega_{c} \coloneqq 2.5 d \coloneqq 4 \text{ in } b \coloneqq 4 \text{ in } \\ f_{f} \coloneqq .25 \text{ in } \end{array}$			
$Check_{weld} := if \left(F_{weld} < R_n, "OK", "NG"\right) = "OK"$ $Use 1/4" Fillet weld all around$ $Baseplate Size Design: \begin{array}{c} f'_c := 3 \ ksi \\ F_y := 35 \ ksi \end{array} \Omega_c := 2.5 d := 4 \ in \\ f'_f := .25 \ in \end{array} b := 4 \ in \\ f'_f := .25 \ in \end{array}$		$F_{nw} \coloneqq 0.6 \cdot F_{EXX} = 42 \ ksi$	
$Check_{weld} := if \left(F_{weld} < R_n, "OK", "NG"\right) = "OK"$ $Use 1/4" Fillet weld all around$ $Baseplate Size Design: \begin{array}{c} f'_c := 3 \ ksi \\ F_y := 35 \ ksi \end{array} \Omega_c := 2.5 d := 4 \ in \\ f'_f := .25 \ in \end{array} b := 4 \ in \\ f'_f := .25 \ in \end{array}$		$F_{nw} \cdot A_{we}$	
Use 1/4" Fillet weld all aroundBaseplate Size Design: $f'_c := 3 \ ksi$ $\Omega_c := 2.5$ $d := 4 \ in$ $b := 4 \ in$ $F_y := 35 \ ksi$ $f'_c := 3 \ ksi$ $f'_f := .25 \ in$ $b := 4 \ in$		$R_n \coloneqq \frac{1}{\Omega} \equiv 3.712 \text{ kpi}$	
Use 1/4" Fillet weld all aroundBaseplate Size Design: $f'_c := 3 \ ksi$ $\Omega_c := 2.5$ $d := 4 \ in$ $b := 4 \ in$ $F_y := 35 \ ksi$ $f'_c := 3 \ ksi$ $f'_f := .25 \ in$ $b := 4 \ in$	(back := if(F < P "	OK" "NC" $- OK$ "
Baseplate Size Design: $f'_c := 3 \ ksi$ $\Omega_c := 2.5$ $d := 4 \ in$ $b := 4 \ in$ $F_y := 35 \ ksi$ $\Gamma_c := 2.5 \ in$ $t_f := .25 \ in$		$mecn_{weld} - m (r_{weld} < n_n, r_n)$	OK, $NG = OK$
Baseplate Size Design: $f'_c := 3 \ ksi$ $\Omega_c := 2.5$ $d := 4 \ in$ $b := 4 \ in$ $F_y := 35 \ ksi$ $\Gamma_c := 2.5 \ in$ $t_f := .25 \ in$		Use 1/4" Fillet weld a	all around
$F_y \coloneqq 35$ ksi $Gt_f \coloneqq .25$ in			
$F_y \coloneqq 35$ ksi $Gt_f \coloneqq .25$ in	Baseplate Size Desi	gn: $f'_c \coloneqq 3 \ ksi$ $\Omega_c \coloneqq 2.5$	$d := 4 in \qquad b := 4 in$
		$F_y \coloneqq 35 \ ksi$	4 - 25 im
1. Compute Required Strength $M_a = 1.36 \ ft \cdot kip$ $P_a := P_{DL} + P_{SL} = 0.513 \ kip$ 2. Choose Trial Baseplate Size $N := 8 \ in$ $B := 10 \ in$			$d_{edge} \coloneqq 1.5$ in
$M_a = 1.36 \ ft \cdot kip$ $P_a \coloneqq P_{DL} + P_{SL} = 0.513 \ kip$ $2. \ Choose \ Trial \ Baseplate \ Size$ $N \coloneqq 8 \ in \qquad B \coloneqq 10 \ in$			
$P_a \coloneqq P_{DL} + P_{SL} = 0.513 \ \textit{kip}$ 2. Choose Trial Baseplate Size $N \coloneqq 8 \ \textit{in} \qquad B \coloneqq 10 \ \textit{in}$			
2. Choose Trial Baseplate Size N:=8 in B:=10 in	$P_a \coloneqq$	$P_{DL} + P_{SL} = 0.513 \ kip$	3
$N := 8 in \qquad B := 10 in$	2 Choose T	rial Baconlato Sizo	0
			Q.
Ó,			2r
			O,
			3
			0

3. Determine e & ecrit; check inequality in Eqn. 3.4.4 to determine if a solution exists

$$e:=\frac{M_a}{P_a}=31.813 \text{ in} \qquad f_{pmax}:=\frac{(0.85 \cdot f'_c)}{\Omega_c}=1.02 \text{ ksi}$$

$$e_{crit}:=\left(\frac{N}{2}\right) - \left(\frac{P_a}{2 \cdot q_{max}}\right) = 3.975 \text{ in} \qquad q_{max}:=f_{pmax} \cdot B=10.2 \text{ kpi}$$
Check_{eccentricity}:= if ($e < e_{crit}$, "Small Moment Design", "Large Moment Design")
Check_{eccentricity}:= if ($e < e_{crit}$, "Small Moment Design", "Large Moment Design")

$$f:=\left(\frac{N}{2}\right) - d_{vdye} = 2.5 \text{ in} \qquad (Assuming anchor rod edge distance = 1.5")$$

$$A_1:=\left(f+\frac{N}{2}\right)^2 = 42.25 \text{ in}^2 \qquad A_2:=\frac{(2 \cdot P_a \cdot (e+f))}{q_{max}} = 3.451 \text{ in}^2$$
Check := if ($A_1 > A_2$, "Solution Exists", "Pick New Baseplate Size")
Check = "Solution Exists"

4. Determine bearing length, Y, and anchor rod tension, Ta

indre information

$$\begin{split} Y &\coloneqq \left(f + \frac{N}{2}\right) - \left(A_1 - A_2\right)^{0.5} = 0.271 ~\textit{in} \\ T_a &\coloneqq \left(q_{max} \cdot Y\right) - P_a = 2.253 ~\textit{kip} \end{split}$$

5. Determine minimum plate thickness

At bearing interface:

$$m := \frac{(N - (0.95 \cdot d))}{2} = 2.1 \text{ in}$$

$$E_{1} \coloneqq Y \cdot \left(m - \frac{Y}{2}\right) \qquad E_{2} \coloneqq \frac{J_{pmax}}{F_{y}}$$

$$t_{p1} \coloneqq 2.58 \cdot \left(E_{1} \cdot E_{2}\right)^{0.5} = 0.321 \text{ in}$$

$$t_{p2} \coloneqq 1.83 \cdot m \cdot E_{2}^{0.5} = 0.656 \text{ in}$$

$$t_{preq1} \coloneqq \text{if} \left(Y < m, t_{p1}, t_{p2}\right) = 0.321 \text{ in}$$

$$t_{preq1} = 0.321 \text{ in}$$

At tension interface:

S.

$$x \coloneqq \frac{N}{2} - \frac{d}{2} + \frac{t_f}{2} - d_{edge} = 0.625 \, in$$

$$t_{preq2} \coloneqq 2.58 \cdot \left(\frac{T_a \cdot x}{B \cdot F_y} \right)^{0.5} = 0.164 \ in$$

$$t_{preq2} = 0.164 \ in$$

Check the thickness using the value of n:

14.42

$$n \coloneqq \frac{B - (0.8 \cdot b)}{2} = 3.4 \text{ in}$$

$$E_1 \coloneqq Y \cdot \left(n - \frac{Y}{2}\right) \qquad E_2 \coloneqq \frac{f_{pmax}}{F_y}$$

$$t_{p1} \coloneqq 2.58 \cdot (E_1 \cdot E_2)^{0.5} = 0.414 \text{ in}$$

$$t_{p2} \coloneqq 1.83 \cdot n \cdot E_2^{0.5} = 1.062 \text{ in}$$

$$t_{preq3} \coloneqq \text{if} \left(Y < n, t_{p1}, t_{p2}\right) = 0.414 \text{ in}$$

